Invia messaggio
QINGDAO ENNENG MOTOR CO.,LTD.
prodotti
prodotti
Casa > prodotti > Motore Gearless a magnete permanente > Motore leggero del magnete della terra rara, un piccolo motore sincrono di 6 Pali

Motore leggero del magnete della terra rara, un piccolo motore sincrono di 6 Pali

Dettagli del prodotto

Luogo di origine: La Cina

Marca: ENNENG

Certificazione: CE,UL

Numero di modello: PMM

Termini di trasporto & di pagamento

Quantità di ordine minimo: 1 insieme

Prezzo: USD 500-5000/set

Imballaggi particolari: imballaggio in condizione di navigare

Tempi di consegna: 15-120 giorni

Termini di pagamento: L/C, T/T

Capacità di alimentazione: 20000 insiemi/anno

Ottenga il migliore prezzo
Evidenziare:

Motore leggero del magnete della terra rara

,

Un piccolo motore sincrono di 6 Pali

Nome:
Produttore a magnete permanente della Cina del motore
Corrente:
CA
Modo di controllo:
Controllo di vettore variabile di frequenza
Materiale:
Terra rara NdFeB
Campo di potenza:
5.5-3000kw
Caratteristiche:
Di piccola dimensione, leggero
Pali:
6
raffreddamento:
IC411, IC416
Dovere:
S1
Isolamento:
F
Nome:
Produttore a magnete permanente della Cina del motore
Corrente:
CA
Modo di controllo:
Controllo di vettore variabile di frequenza
Materiale:
Terra rara NdFeB
Campo di potenza:
5.5-3000kw
Caratteristiche:
Di piccola dimensione, leggero
Pali:
6
raffreddamento:
IC411, IC416
Dovere:
S1
Isolamento:
F
Motore leggero del magnete della terra rara, un piccolo motore sincrono di 6 Pali

Il CE ha approvato il fornitore Gearless della Cina del motore del magnete permanente della terra rara

Norme di rendimento energetico
aderisca al grado GB30253-1
Modo del lavoro
S1
Altitudine
inferiore a 1000m
Temperatura ambientale
-15~+40℃
Dimensioni dell'installazione
risponda alla norma di IEC
Modo di controllo
controllo di vettore variabile di frequenza
Campo di potenza
5,5 〜 3000kw
Installi il tipo
IMB3 IMB5 IMB35
Modo di raffreddamento
IC411 o IC416
Efficienza stimata
50,75,125,150Hz (su misura secondo il requisito)
Classe d'isolamento
F (H)
Parti facoltative
Codificatore, trasformatore a spirale, ptc, PT100
Grado di protezione
IP54 (IP23 personalizzabile)
Cablaggio del tipo
scatola di giunzione (la spina di aviazione può essere personalizzata secondo il requisito)
Installazione
IMB3 IMB5 IMB35
Tensione nominale
380V±10%, 660V±10%

Ambiente richiesto
inferiore ad altitudine di 1000m
〜 45°C di temperatura -15
umidità relativa inferiore a 90%

 

Che cosa è il motore sincrono a magnete permanente?

 

Il MOTORE SINCRONO A MAGNETE PERMANENTE pricipalmente è composto di statore, di rotore, di telaio, di copertura anteriore-posteriore, di cuscinetti, ecc. La struttura dello statore è basicamente la stessa di quella dei motori asincroni comuni e la differenza principale fra il motore sincrono a magnete permanente ed altri generi di motori è il suo rotore.

 

Il materiale a magnete permanente con (magnetico fatto pagare) magnetico premagnetizzato sulla superficie o dentro il magnete permanente del motore, fornisce il campo magnetico di intercapedine, necessario per il motore. Questa struttura del rotore può efficacemente ridurre il volume del motore, ridurre la perdita e migliorare l'efficienza.

 

Immagini dettagliate
Motore leggero del magnete della terra rara, un piccolo motore sincrono di 6 Pali 0
 
Come fanno i motori a magnete permanente lavorano?
 

La caratteristica di definizione di PMACMs – i magneti permanenti all'interno del loro rotore – è agita su dal campo magnetico della rotazione (RMF) delle bobine dello statore ed è respinta in moto rotazionale. Ciò è una deviazione da altri rotori, in cui la forza magnetica deve essere indotta o generata nell'alloggio del rotore, richiedenti più corrente. Ciò significa che PMACMs è generalmente più efficiente dei motori asincroni, poichè il campo magnetico del rotore è permanente e non ha bisogno di una fonte di potere di essere usato per la sua generazione. Ciò inoltre significa che richiedono un azionamento variabile di frequenza (azionamento di PM o, di VFD) per funzionare, che è un sistema di controllo che liscia fuori la coppia di torsione prodotta da questi motori. Commutando la corrente in funzione e a riposo alle bobine dello statore in determinate fasi di rotazione del rotore, l'azionamento di PM controlla simultaneamente la coppia di torsione ed il corrente ed usa questi dati per calcolare la posizione del rotore e quindi la velocità dell'uscita di asse. È macchine sincrone, poichè la loro velocità di rotazione abbina la velocità del RMF. Queste macchine sono relativamente nuove ed ancora stanno ottimizzande, in modo dall'operazione specifica di tutto il un PMACM è, per ora, essenzialmente unico ad ogni progettazione.

 

FME ed equazione di coppia di torsione

 

In una macchina sincrona, il FME medio ha indotto alla fase è chiamato dinamica incita il FME in un motore sincrono, il cambiamento continuo tagliato da ogni conduttore per rivoluzione è Pϕ Weber

Poi il tempo speso per completare una rivoluzione è sec 60/N

 

Il FME medio ha indotto per conduttore può essere calcolato usando

 

(PϕN/60) x Zph = (PϕN/60) x 2Tph

 

Dove Tph = Zph/2

 

Di conseguenza, il FME medio alla fase è,

 

= un ϕ x Tph x di 4 x PN/120 = 4ϕfTph

Dove Tph = no. Dei giri collegati in serie alla fase

 

ϕ = cambiamento continuo/palo nel weber

 

P= no. Dei pali

 

Frequenza di F= nel hertz

 

Zph= no. Dei conduttori collegati in serie alla fase. = Zph/3

 

L'equazione di FME dipende dalle bobine e dai conduttori sullo statore. Per questo motore, il fattore Kd di distribuzione ed il fattore KP del passo inoltre sono considerati.

 

Quindi, E = xKd x KP del ϕ x f x Tph di 4 x

 

L'equazione di coppia di torsione di un motore sincrono a magnete permanente è data come,

 

T = (3)/ωm del sinβ di x Eph x Iph x

 

Perché scelga i motori a corrente alternata a magnete permanente?

 

I motori a magnete permanente di CA (PMAC) offrono parecchi vantaggi sopra altri tipi di motori, includenti:

 

Alta efficienza: I motori di PMAC sono altamente efficiente dovuto l'assenza delle perdite del rame del rotore e riduttrice avvolgere le perdite. Possono raggiungere le efficienze di fino a 97%, con conseguente risparmi energetici significativi.

 

Densità di alto potere: I motori di PMAC hanno un'più alta densità di potenza confrontata ad altri tipi del motore, che i mezzi essi possono produrre più potere per unità della dimensione e del peso. Ciò li rende ideali per le applicazioni dove lo spazio è limitato.

 

Alta densità di coppia di torsione: I motori di PMAC hanno un'alta densità di coppia di torsione, che i mezzi essi possono produrre più coppia di torsione per unità della dimensione e del peso. Ciò li rende ideali per le applicazioni dove l'alta coppia di torsione è richiesta.

 

Manutenzione riduttrice: Poiché i motori di PMAC non hanno spazzole, richiedono meno manutenzione ed hanno una durata della vita più lunga che altri tipi del motore.

 

Controllo migliore: I motori di PMAC hanno migliore controllo di coppia di torsione e della velocità confrontato ad altri tipi del motore, rendente li ideali per le applicazioni dove il controllo preciso è richiesto.

 

Rispettoso dell'ambiente: I motori di PMAC sono più rispettosi dell'ambiente di altri tipi del motore poiché usano i metalli di terra rara, che sono più facili da riciclare e produrre meno spreco confrontato ad altri tipi del motore.

 

In generale, i vantaggi dei motori di PMAC operare loro una scelta eccellente per una vasta gamma di applicazioni, compreso i veicoli elettrici, il macchinario industriale ed i sistemi energetici di energia rinnovabile.

 

SPM contro l'IPM

Motore leggero del magnete della terra rara, un piccolo motore sincrono di 6 Pali 1

Un motore di PM può essere separato in due categorie principali: motori a magnete permanente di superficie (SPM) e motori a magnete permanente interni (IPM). Nessuno dei due tipo di progettazione del motore contiene le barre del rotore. Entrambi i tipi generano i flussi magnetici dai magneti permanenti affigguti a o dall'interno del rotore.

 

I motori di SPM hanno magneti affigguti all'esterno della superficie del rotore. A causa di questo montaggio meccanico, la loro forza meccanica è più debole di quella dei motori dell'IPM. La forza meccanica indebolita limita la velocità meccanica sicura massima del motore. Inoltre, questi motori esibiscono il saliency magnetico molto limitato (≈ Lq di Ld).

 

I valori di induttanza hanno misurato ai terminali del rotore sono coerenti indipendentemente dalla posizione del rotore. A causa del rapporto vicino di saliency di unità, le progettazioni del motore di SPM contano significativamente, se non completamente, sulla componente magnetica di coppia di torsione per produrre la coppia di torsione.

 

I motori dell'IPM hanno un magnete permanente incastonato nel rotore stesso. A differenza delle loro controparti di SPM, la posizione dei magneti permanenti rende i motori dell'IPM molto meccanicamente sani ed adatti a funzionamento a velocità molto elevata. Questi motori inoltre sono definiti dal loro relativamente alto rapporto magnetico di saliency (Lq > Ld). dovuto il loro saliency magnetico, un motore dell'IPM ha la capacità di generare la coppia di torsione approfittando sia delle componenti di riluttanza che magnetiche di coppia di torsione del motore.

 

Auto-percependo contro l'operazione a circuito chiuso

Gli avanzamenti recenti nella tecnologia dell'azionamento permettono il CA standard guida «auto-per individuare» e seguire la posizione del magnete del motore. Un sistema a ciclo chiuso utilizza tipicamente il canale di z-impulso per ottimizzare la prestazione. Con determinate routine, l'azionamento conosce la posizione esatta del magnete del motore seguendo i canali di A/B e correggendo gli errori con il z-Manica. Conoscere la posizione esatta del magnete tiene conto produzione ottimale di coppia di torsione con conseguente efficienza ottimale.

 

Fonda l'indebolimento/l'intensificazione dei motori di PM

Il cambiamento continuo in un motore a magnete permanente è generato dai magneti. Il campo di cambiamento continuo segue un determinato percorso, che può essere amplificato o opporrsi a. L'amplificazione o intensificare del campo di cambiamento continuo permetterà che il motore temporaneamente aumenti la produzione di coppia di torsione. L'opposizione del campo di cambiamento continuo negherà il giacimento attuale del magnete del motore. Il giacimento riduttore del magnete limiterà la produzione di coppia di torsione, ma riduce la tensione retro-FME. La tensione riduttrice retro-FME libera la tensione per spingere il motore per funzionare alle velocità ad alto rendimento. Entrambi i tipi di operazioni richiedono la corrente supplementare del motore. La direzione del motore corrente attraverso l'd-asse, se dal regolatore del motore, determina l'effetto desiderato.

 

Il motore sincrono a magnete permanente ha le seguenti caratteristiche:

 

1. L'efficienza stimata è motori asincroni più superiore normali di 5% - di 2%;

 

2. L'efficienza aumenta rapidamente con l'aumento del carico. Quando le variazioni del carico all'interno della gamma di 25% - 120%, mantiene l'alta efficienza. Il raggio d'azione di alto-efficienza è molto superiore a quello dei motori asincroni comuni. il Luminoso carico, il variabile-carico ed il pieno carico tutto hanno effetti economizzatori d'energia significativi;

 

3. Fattori di potenza fino a 0,95 e sopra, nessuna compensazione reattiva richiesta;

 

4. Il fattore di potenza notevolmente è migliorato. Rispetto ai motori asincroni, la corrente corrente è ridotta da più di 10%. dovuto la diminuzione nelle perdite correnti di funzionamento e di sistema, gli effetti economizzatori d'energia di circa 1% possono essere raggiunti.

 

5. Aumento a bassa temperatura, densità di alto potere: l'aumento di temperatura asincrono trifase più basso del motore 20K, l'aumento di temperatura di progettazione è lo stesso e può essere trasformato un più piccolo volume, conservante più efficaci materiali;

 

6. Alta coppia di torsione iniziante ed alta capacità di sovraccarico: secondo i requisiti, può essere progettato con alta coppia di torsione cominciante (3-5 volte) e l'alta capacità di sovraccarico;

 

7. Il sistema di controllo variabile della velocità di frequenza è usato, che è migliore nella reazione dinamica e migliorare che quello dei motori asincroni.

 

8. Le dimensioni dell'installazione sono attualmente le stesse dei motori asincroni ampiamente usati e la progettazione e la selezione sono molto convenienti.

 

9. dovuto l'aumento nel fattore di potenza, il potere visivo del trasformatore dell'impianto di alimentazione notevolmente è ridotto, che migliora la capacità dell'alimentazione elettrica del trasformatore e può anche notevolmente ridurre il costo del cavo del sistema (nuovo progetto);

 

Alcuni piccoli problemi che sono trascurati facilmente circa il motore:

 

1. Perché non può general motors essere utilizzato nelle aree del plateau?

L'altitudine ha effetti contrari sull'aumento di temperatura del motore, sulla corona del motore (motore ad alta tensione) e sulla commutazione del motore di CC. I seguenti tre aspetti dovrebbero essere notati:

(1) più alta l'altitudine, più alta l'aumento di temperatura del motore e più bassa il potenza di uscita. Tuttavia, quando la temperatura diminuisce con l'aumento di altitudine abbastanza per compensare l'influenza di altitudine sull'aumento di temperatura, la potenza d'uscita nominale del motore può rimanere identicamente;

(2) le misure della Anti-corona dovrebbero essere approntate quando il motore ad alta tensione è utilizzato nel plateau;

(3) l'altitudine non è buona per la commutazione del motore di CC, in modo dall'attenzione di paga alla selezione dei materiali della spazzola di carbone.

 

2. Perché non è il motore adatto ad operazione di carico leggero?

Quando il motore funziona ad un carico leggero, causerà:

(1) il fattore di potenza del motore è basso;

(2) l'efficienza del motore è bassa.

(3) causerà lo spreco dell'attrezzatura e l'operazione antieconomica.

 

3. Perché non può il motore inizio in un ambiente freddo?

L'eccessivo uso del motore in un ambiente a bassa temperatura causerà:

(1) crepe dell'isolamento del motore;

(2) sopportando le gelate del grasso;

(3) la polvere della lega per saldatura del giunto del cavo è spolverizzata.

Di conseguenza, il motore dovrebbe essere riscaldato ed immagazzinato in un ambiente freddo e le bobine ed i cuscinetti dovrebbero essere controllati prima di correre.

 

4. Perché non può un motore 60Hz usare un'alimentazione elettrica 50Hz?

Quando il motore è progettato, la lamiera di acciaio del silicio funziona generalmente nella regione di saturazione della curva di magnetizzazione. Quando la tensione di alimentazione elettrica è costante, ridurre la frequenza aumenterà i flussi magnetici e la corrente di eccitazione, con conseguente aumento nel consumo corrente e di rame del motore, che finalmente condurrà ad un aumento nell'aumento di temperatura del motore. In casi gravi, il motore può essere bruciato dovuto il surriscaldamento della bobina.

 

5. inizio morbido del motore

L'inizio morbido ha un effetto economizzatore d'energia limitato, ma può ridurre l'impatto della partenza sulla griglia di potere e può anche raggiungere un inizio senza scosse per proteggere l'unità di motore. Secondo la teoria di risparmio energetico, dovuto l'aggiunta di un circuito di controllo relativamente complesso, un inizio morbido non solo non risparmia l'energia ed inoltre aumenta il consumo di energia. Ma può ridurre la corrente di avviamento del circuito e svolgere un ruolo protettivo.

 

10. Quando il nuovo progetto è sviluppato, tutti i sistemi di azionamento utilizzano i motori sincroni a magnete permanente, l'investimento del progetto è basicamente lo stesso dell'uso dei motori asincroni ed il progetto può continuare ad ottenere i benefici economizzatori d'energia dopo che il progetto è messo in funzione;

 

Nel settore industriale generale, la sostituzione dei motori asincroni di alto-efficienza a bassa tensione (380/660/1140V), il sistema risparmia l'energia di 30% - di 5% ed i motori asincroni di alto-efficienza ad alta tensione (6kV/10kV), sistema conserva 2% to10%.